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Abstract

Lightweight threads are becoming increasingly useful in supporting parallelism and asynchronous
control structures in applications and language implementations. Recently, systems have been

designed and implemented to support interprocessor communication between lightweight threads

so that threads can be exploited in a distributed memory system. Their use, in this setting, has
been largely restricted to supporting latency hiding techniques and functional parallelism within

a single application. However, to execute data parallel codes independent of other threads in

the system, collective operations and relative indexing among threads are required. This paper

describes the design of ropes: a scoping mechanism for collective operations and relative indexing

among threads. We present the design of ropes in the context of the Chant system, and provide

performance results evaluating our initial design decisions.

*Research supported by the National Aeronautics and Space Administration under NASA Contract No. NASA-
19480, while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.





1 Introduction

Lightweight threads are becoming increasingly useful for supportingparallelism and asyn-

chronous events in applications and language implementations. In particular, many recent lan-

guages for parallel and distributed computing employ lightweight threads to represent functional

parallelism, to overlap computations with communications, or to simplify resource management [1,

7, 12, 14]. In response to this increasing demand for parallel language support, several projects

have emerged with the goal of providing standard lightweight thread support [4, 8, 9], and two

committees have been formed to establish standard interfaces for such a runtime system [17, 18].

Currently lacking from these systems is the ability to support collective operations and relative

indexing among the threads, which are commonly used in data parallel programs. For example,

consider a simple data parallel algorithm for computing the sum over a distributed array (c.f.

Figure 1). In this example, each process will compute its local sum and then participate in a global

reduction to obtain the total sum. To execute this example as a set of distributed threads in the

midst of other thread activity, and without involving the other threads, a scoping mechanism is

needed for identifying the threads that will contribute to the global reduction. Ropes provides this

mechanism.
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Figure 1: One-dimensional array distributed among four threads in a rope

The key to collective operations is the ability for the programmer (or compiler) to specify

the scope of the operation; that is, the entities that will be involved in the operation. Collective

operations are typically supported at the process level by the underlying communication system [11],

or by standard communication interfaces [6, 22]. For example, MPI [6] provides a mechanism for

process scoping called groups. However, support for grouping threads within processes is not

currently supported by either MPI or the new thread-based runtime systems - yet such support

is clearly needed if threads are to perform collective operations on a subset of the threads in the

system.

Relative indexing allows the programmer to specify spatial relationships among the parallel

execution units, which express the natural "neighboring" relationships in data parallel algorithms.

Without support for relative indexing among threads, the programmer would be required to assign

relative identifiers to threads. Also, with proper support for mapping processes to processors,

relative indexing can also be used to optimize performance by ensuring that an algorithm is correctly

mapped onto the underlying topology.

In this paper we describe the design and implementation of ropes, a mechanism for supporting



collectiveoperationsand relativeindexingamongthreads.Wedescribethe designof ropesin the
contextof Chant[9],a runtimesystemwhichsupportsboth intra-andinter-processorcommunica-
tion betweenlightweightthreadsin adistributedsystem.However,thedesignissueswepresentare
applicableto any thread-basedruntimesystemthat supportsremoteservicerequests.Our contri-
bution is to providea detailedexaminationof the issuesthat arisein supportingrelativeindexing
and collectiveoperationsamonglightweightthreads.Additionally,weprovidean implementation
of ropesatopChantandreport initial performanceresultsevaluatingourdesigndecisions.

The remainderof the paperis organizedasfollows:Section2 providesbackgroundon Chant,
a systemsupportingcommunicationbetweenthreads,and Section3 outlinesthe designof ropes
within theChantsystem.Section4 addressestheissuesof interfacingwith ropes,particularlyfrom
the perspectiveof a dataparallelcompiler.Section5 presentsperformanceresultsevaluatingour
initial implementation.Section6 outlinesrelatedresearchprojects,andweconcludein Section7.

2 Chant

The POSIX committee has recently established a standard for the interface and functionality of

lightweight threads within an operating system process, called pthreads [10]. Since threads are

defined within the context of a process, they share a single address space, and communication

among threads is only defined in terms of shared memory primitives, such as events and locks.

Thus, the interaction of pthreads in a distributed environment is undefined. Likewise, the Message

Passing Interface Forum (MPI) has recently established a standard for communication between

processes [6]. Although various extensions to the standard have already been proposed [19, 20],

communication between lightweight threads within processes has yet to be supported by MPI.

Therefore, Chant was designed to provide a simple mechanism for combining lightweight threads

with interprocessor communication.

Chant
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Figure 2: Chant runtime layers and interfaces

Chant [9]* is designed as a layered system (as shown in Figure 2), where efficient point-to-point

communication provides the basis for implementing remote service requests and, in turn, remote

thread operations. Chant relies on a system interface to achieve a high degree of portability, where

*For more information on Chant, please refer to http ://www. icase, edu/-haines/html/chant, html



the underlying thread and communication systems are ports0? and MPI, respectively. Next, Chant

supports point-to-point communication (i.e., send/recv) between any two threads in the system by

utilizing the underlying message passing system (MPI). Issues to be addressed at this level include

naming global threads in the system, avoiding intermediate copies for message buffers, and efficient

polling for outstanding messages. Chant uses the concept of a contezt to represent an addressing

space within a processor, where contexts represent a linear ordering of processes in the system as

maintained by the underlying communication system (e.g., MPI uses rank in MPI_COMM_W0RLD).

Global threads within Chant are therefore identified using the doublet <context_id,thread_id>.

Atop efficient point-to-point message passing, Chant supports remote service requests by instantiat-

ing, in each context, a service thread which is responsible for handling all incoming remote service

requests (asynchronous messages) and delivering any necessary replies. Using the remote service

request mechanism, Chant can easily support remote thread operations, such as remote thread cre-

ate, by invoking the specified thread request on the desired processor and, possibly, by adding some

software "glue" to make it work. Finally, Chant provides a user interface that is an extension of the

pthreads standard, where access to each of the underlying layers can be made directly or indirectly.

Thus it is still possible to access the underlying MPI or pthreads interfaces from within a Chant
thread.

3 Design

3.1 Requirements

A system for implementing collections among a set of threads (i.e., ropes) must satisfy the following

requirements:

1. The collections are entities whose members can span contexts, and thus their identifiers must

be unique within the system.

2. Each collection must keep track of its constituent contexts and threads, and operations to

add and delete from this list must be performed atomically.

. Thread ranks within a collection must be unique so that there exists a one-to-one mapping

between the thread identifier with respect to the context (global thread id) and the thread

identifier with respect to the rope (relative index).

We now describe the design of such a collection of threads, called ropes, which satisfies these

requirements. Our design builds upon the existing layers of Chant (Section 2), maintaining the

goals of portability, efficiency, and utility.

3.2 Rope Servers

The requirements listed in Section 3.1 are typically satisfied by having a centralized name server

responsible for allotting rope identifiers and for performing atomic updates to the internal data

structures. Distributed algorithms for name servers [15] and atomic operations [13] are well known,

tPorts0 is a subset of the pthreads interface designed by the PORTS consortium. For more information, refer to

http://www, cs. uoregon, edu: 80/paracomp/ports/



but their added overhead and implementation complexity are often unwarranted in an initial de-

sign. However, a centralized solution for naming and updating ropes will certainly cause hot-spots.

Therefore, our initial design is a two-level approach, derived from the idea- of two-level page man-

agement schemes for distributed shared memory systems [3], that allows the user to control the

contention among the servers by dividing the work between two types of centralized servers:

1. a single, global name server used to allot identifiers for new ropes, and

2. a rope server associated with each rope that is responsible for all modifications and requests

pertaining to that rope.

8.3 Rope Creation

A rope is a set of threads that defines a scope for collective operations, and creating a rope is

tantamount to specifying this set of threads. In some instances, it may be useful to create a set of

new threads which will define a rope. For example, a host program may create a set of new threads

as node programs for a data parallel computation, and the new threads are to employ collective

operations and should thus comprise a rope. This would also be the model employed by a data

parallel compiler. In other instances, it may be useful to add existing threads into an extant rope.

For example, a threaded system may start with a single thread on each processor, and each of these

threads may add themselves into a rope representing the global set of threads. If all newly-created

threads also added to this rope, then this would be the thread-level equivalent to MPI_COMM_NORLD.

Therefore, the rope creation mechanism must be capable of both creating new threads to comprise

a rope, and adding existing threads to a rope. This is accomplished by separating the tasks of

creating a rope and specifying membership (i.e. joining) a rope.

Creating a rope is done using the rope_create call, resulting in a message being sent from the

source thread to the global name server, which returns the next available rope identifier. To avoid

further messages and a more complicated protocol, the context of the calling thread is designated

as the rope server for the new rope. Thus, distribution of the rope servers is accomplished by

having different threads invoke the rope_creal;e routine, which is under direct control of the user.

The global name server keeps track of which context is the server for each active rope so that any

thread in the system can always find out who the server is for a particular rope (via the global

name server).

A newly-created rope is initially empty, and the user can use the following two mechanisms for

specifying membership:

1. rope_addnew, which creates a specified number of threads on a set of contexts and adds them

to a rope; and

2. rope_addself, which adds the calling thread to a rope.

In the case of rope_addnew, the calling thread sends a message to the server for the specified

rope, indicating how many threads are to be created and on which contexts. The rope server assigns

the ranks and sends messages to the specified contexts informing them to create the required number

of local threads, and to update their local rope translation tables with the ranks of the new threads.

The individual contexts send the thread identifiers for the new threads back to the rope server so



that the rope server can update the master copy of the translation table. If the rope is using

the strong consistency model (see Section 3.4), then an image of the new rope translation table is

propagated to all member contexts. The rope_addself is a special-case of rope_add_new, in which

the step of creating the threads is simply bypassed.

3.4 Relative Indexing

Spatial relationships play an important role in data parallel algorithms, and most communication

systems provide a linear ordering of the participating processes, which allows for relative indezing

of the processes independent of their actual system address. In addition to supporting collective

operations, ropes provide a relative ordering for a set of threads that is independent of their actual

global address. Thus we say that each thread within a rope is assigned a unique rank, starting from

zero and linearly increasing. This makes it possible to send a message from thread i to thread i + 1

within a rope, without regard to the physical location of those threads. Spatial ordering can also be

used to gain performance by exploiting the underlying connectivity of the architecture. However,

for this to happen the user must be able to specify a mapping of threads to processes (allowed in

Chant) and processes to processors (currently not allowed in MPI).

To support relative indexing, the system must provide a one-to-one mapping between the rank

within a rope (<rope_id, rank>) and the global address of a thread (< context_id, thread_id>)_t.

This is accomplished via a rope translation table (see Figure 1) to store and retrieve this mapping

information. If the translation table is kept in a centralized location, then remote references would

be necessary for translating all relative indices, which would be prohibitively expensive. Therefore

we replicate this information and keep a copy of the table on each participating context for the

rope. Figure 3 depicts the data structure for the local rope list.
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Rope Server Identifier

Consistency Requirement

Context List
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Figure 3: Data structure for local rope list

Again, borrowing from earlier work in area of page coherence for distributed shared memory

systems [2], we adopt two options for keeping the distributed translation tables consistent: new

information is broadcast so that all tables are kept up-to-date at all times (strong consistency),

or tables are allowed to remain out-of-date until a reference for a thread is generated, causing

the information to be retrieved and stored (cached) in the local table (weak consistency). If each

thread in a rope communicates with only a small number of other threads in the rope, then the

tAs defined by Chant, each process is assigned a unique context identifier, and all threads are given unique thread
id's within a context. Therefore, a global thread is identified by this doublet.



weak consistency model should result in better performance, since the creation cost is so much less.

If, on the other hand, each thread in a rope will communicate with many other threads in the rope,

the strong consistency model should result in better performance. Determining the crossover point

for a given application is an open question depending on the overheads of the two approaches (see

Section 5). Therefore, the system supports both strong and weak consistency on a per-rope basis

by providing an argument to the rope_create routine to specify the consistency requirement.

To translate a relative index into a Chant global thread identifier §, the following steps are taken:

1. If the local rope table does not have an entry for the given rope identifier (i.e., the calling

thread is in a context which is not a member of the specified rope), a message is sent to the

server for the rope (via the global name server) requesting that the translation table for this

rope be returned.

2. The translation table for the rope is accessed to determine if the specified rank has a valid

entry. If not, then either it is an error (strong consistency) or the entry is requested from the

rope server (weak consistency), returned, and cached for future requests.

3.5 Collective Operations

MPI provides the group facility for specifying which processes will participate in a collective oper-

ation, and ropes extends this idea to the thread level. To do this, each context participating in a

rope must know the other contexts in the rope as well as the list of local threads in the rope, and

so this information is maintained for each rope in a rope table (refer to Figure 3).

In order to take advantage of system-specific optimizations for collective operations among

processors, all collective operations among threads are performed in two steps: at the thread level

and at the context level. For example, consider the rope_barrier operation, which performs a

barrier synchronization among all threads in a rope. The barrier is performed first at the thread

level within a context, and then at the context level, as described by the following algorithm:

1. Each thread, upon executing the barrier command, will send a message to an accumulator

thread for that context, which will accumulate the count for the number of messages received.

After sending the message, the calling thread is blocked on an appropriate event.

2. After the local accumulator thread has collected the number of barrier messages equal to the

number of threads in the rope on this context (this information is stored in the rope table),

a message is sent to the rope server for this rope. The accumulator thread then waits for a

reply from the rope server.

3. When the rope server has collected a message from each context in the thread, a message is

returned to the accumulator threads on the participating contexts, informing them that the

barrier is complete.

4. The accumulator threads then triggers the events for the local waiting threads, thus complet-

ing the barrier.

§<rope_id, rank> -- <context_id, thread/d>



Ideally, we would like to utilize the context-level primitives from MPI, such as MPI_BARRIEK,

for replacing steps 2 and 3 in our algorithm. However, the MPI_BAKRIEK call invoked by the local

accumulator threads would block the entire process, including any other threads in that context

not related to the rope, until all participating contexts had invoked the MPI_.BAKFtlER call. This

would remove one of the key features of a multi-threaded system: the ability to overlap useful

computation (in the form of ready, waiting threads) with long-latency, blocking operations. As

a result, our design does not use the MPI..BAKKIER call, but rather a simple message-combining

scheme that allows other ready threads to execute while the barrier operation proceeds. Whenever

possible, we utilize the MPI collective operations, and should the MPI committee see fit to extend

the standard with a non-blocking barrier operation, we would certainly incorporate it into the

design as mentioned.

Other collective communication operations, such as reduction functions, can be implemented in
a similar two-level fashion.

3.6 Co-scheduling

The concept of co-scheduling (or gang scheduling) was first introduced in [16], and refers to the

idea of simultaneously scheduling all related processes of a parallel program on a set of processors.

For machines that are time-shared (as opposed to space-shared), this is a realistic concern, since

many parallel algorithms are tightly coupled with respect to communication phases. Allowing the

processes to become out-of-phase can seriously degrade the performance of the algorithm.

Ropes provide the capability for defining membership in a set that can be exploited by a

thread-level gang scheduling mechanism. However, it remains unclear whether the overheads of

co-scheduling are justified given the fine granularity of threads (as opposed to processes). Also,

co-scheduling would require modification of the underlying thread-level scheduler, which violates

the portability goal of Chant, since access to the scheduler is not allowed by pthreads. This remains

an area for future investigation.

4 Interfacing with Ropes

In this section we address the issues of interfacing with ropes from the perspective of a data

parallel compiler targeting a multithreaded system, such as Chant. For reference, Figure 9 gives

the interface for the rope calls as currently implemented in Chant.

A primary goal of ropes is to allow a data parallel compiler, such as an HPF compiler, to easily

produce data parallel code that is targeted for a thread-based implementation. To examine the

issues involved, let us consider the HPF fragment in Figure 4.

Here, we have an array, A, distributed by block across a set of processors. The number of

processors is to be determined externally at runtime. The forall statement shifts the array one

element to the left. The scalar variable, X, is assumed to replicated, and thus the value of A(1)

has to be broadcast to all other processors.

Most HPF compilers would convert the above code into SPMD code to be executed by a context

on each processor. A typical version of the code, using Intel's NX communication calls, is shown

in Figure 10.



!HPF$ processors P(number_of_processors())

real A(N)

real X

!HPF$ distribute A(block)

...

forall (I=I,N-I) A(I) = A(I+I)

x = A(i)

Figure 4: HPF program fragment

In the code in Figure 10, each context determines the total number of contexts participating

in the execution and allocates enough memory for the local portion of the array A along with an

overlap area (in this case 1) to accommodate the required non-local data. The forall statement

is translated into a strip-mined do loop such that each context loops over its local portion of the

array. Before the loop, each context (except context 0) communicates its left boundary element to

its neighbor on the left and then receives the value sent by its neighbor and places it in the overlap

area. The assignment, on the other hand, turns into a broadcast from the context owning element

A(1) to all other contexts.

Targeting a thread-based runtime system would require that the compiler to generate code for

threads rather than processes. If support for ropes is not provided, it becomes the compiler's re-

sponsibility to generate code which keeps track of all the threads participating in the data parallel

computation including the translation table required for relative indexing. Thus, before a commu-

nication, the thread would have to determine the global thread id of the thread it is communicating

with. Similarly for collective communications, such as the broadcast in the above case, the compiler

would have to generate code to multicast to the set of threads participating in the execution.

Initialization code executed in the lead context

call pthread_rope_create(rope_id, WEAK)

call pthread_rope_addnew(rope_id, NULL, UserF, NULL, O,

call pthread_rope_join( rope_id )

P, ALL, I)

Figure 5: Sample initialization code for ropes

The design of ropes, as described here, provides runtime support for the translation table and

the multi-casting in the context of a multithreaded environment. The code produced by a compiler

targeting such an interface would have two parts. First, the rope would have to be initialized by

creating the appropriate threads, and then the user code would be executed as an SPMD function

in each of the threads. Part of the initialization code is shown in Figure 5.

We assume here that the P contexts participating in the execution have been already setup.



The lead context then creates a rope with weak consistency and adds one thread per context in all

the contexts. The lead context then waits for the rope to exit before continuing on. The user code

is executed by each thread in the rope using the subroutine UserF is depicted in Figure 11.

In comparing the two compiler-generated codes (Figure 10 and Figure ll), we see that the

differences are minor. The ropes based code has some extra setup code. Also the individual thread

code has to determine its rope before it starts execution and that the message send and broadcast

have to provide an extra rope id. Each thread also calls pthread__rope_exit at the end of its

execution so that the lead context can be notified when the data parallel computation has finished.

Overall, an HPF compiler has to put in a few extra calls to runtime routines to target a ropes

interface. This offers the advantage of re-targeting a data parallel compiler for a thread-based

runtime system with little modification.

5 Experimental Results

Having described the design for our ropes implementation, we now examine the performance of

creating a rope, adding new threads to a rope, using relative indexing to send messages between

threads given their rope and rank identifiers (as opposed to context, thread identifiers), and per-

forming collective operations. We measure the results under both strong and weak consistency

models, and all measurements are performed atop Chant on an Intel Paragon.

5.1 Rope Creation

Creating a rope results in a remote service request being sent to the global name server, and its

reply, which requires about 375 #s. After the rope server has returned the new rope identifier

to use, some data structures are initialized and the rope creation is complete. If the number of

rope_create operations being executed on all contexts in the system at the same time is one, then

the creation time is independent of the number of contexts; otherwise, contention for the global

rope server will degrade rope creation time depending on the number of simultaneous rope_create
calls.

Adding new threads to a rope, using the rope_addnew call, requires sending a message to the

rope server, indicating how many threads are to be created on the specified list of contexts. The

rope server must then broadcast a request to those contexts, informing them to create the new

threads. After creating the threads, the participating contexts send a message back to the rope

server, detailing the thread identifiers of the new threads so that the rope server can complete the

rope translation table. Finally, if the consistency mode for the rope is STRONG, then the rope server

must broadcast the new rope table to the participating contexts. Therefore, the total number of

message exchanges required to add threads on N contexts is 2N + 1 for weak consistency and 3N + 1

for strong consistency. Figure 6 depicts the execution times for rope_add.new, where 4 new threads

are created on 2 - 32 contexts and added to an existing rope.

5.2 Relative Indexing

Figure 7 depicts the time (averaged over 10 runs) required to exchange a message (i.e., send/receive

pair) on the Intel Paragon using four different mechanisms for message passing:

9
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Figure 6: Execution times for rope_addnew, 4 threads per context

1. The bottom line corresponds to MPI communication directly between processes.

2. The next line represents Chant thread-to-thread communication using global thread identi-

fiers.

3. The next line represents Chant thread-to-thread communication using the relative rank within

a thread. Thus, the system must first translate the <rope, rank> pair into a global thread

identifier, <context, thread_id>, and then invoke the normal chant__end function. These

numbers assume that the rope table entry containing the global thread identifier is valid

(either strong consistency or weak consistency already cached).

4. The top line represents Chant thread-to-thread communication using the relative rank within

a rope (as with the previous line), but assuming that the rope table entry for this rank is

not valid (weak consistency, not cached) and therefore must be fetched from the server for

this rope, which is on a different context from the calling thread. Thus, the exchange time

is double that of the previous line, accounting for the exchange needed to get the translation

information from the rope server. This is the worst-case situation for the rope_send.

The results from Figure 7 indicate that relative indexing adds an insignificant overhead to the

cost of sending a message between two threads when the translation information is present, and

doubles the cost when the translation information must be retrieved from the server.

5.3 Collective Operations

All of the collective operations follow essentially the same algorithm (detailed in Section 3.5), so we

will only address the rope_barrier operation in this section. Figure 8 gives the execution times

10



0)
E

4000

35OO

3000

2500

2000

1500

1000

50O

Message Exchange Times on the Intel Paragon

i ...... 1

Chant, relative indexing without table entry -_---

Chant, relative indexing with table entry -_---

Chant, global identifiers -8--

MPI

0

100 :00000

/
/
/
i

.i"
/
J

/
/
!

/

//" z./_

/ /.-

/z //..

/ /.'

1000 10000

Message Size (bytes)

Figure 7: Execution times for point-to-point communication

(in #s) for a rope_barrier operation on a varying number of contexts (one thread per context),

along with the corresponding cost for an MPI barrier on the same number of processes. With only

one thread per context, this is a worst-case scenario in comparing with MPI, since our design must

account for the possibility of multiple threads per context. Also, as outlined in Section 3.5, we are

unable to take advantage of the underlying MPI_Bcast routine.

6 Related Research

Other related work includes systems for supporting distributed threads, such as Nexus [8], and

Panda [4], though these systems do not currently support the notion of ropes.

The term "rope" was first coined in the pthreads++ system [21], in which a rope is a C++

class that provides support for data parallel execution of a task in a shared memory environment,

and later extended to a distributed memory environment.

A rope is the thread-level analogy to the process-level scoping mechanisms provided by most

communication packages, such as process groups in MPI [6]. MPI does not currently support the

notion of threads as addressable entities within a process, nor the ability to group such threads.

However, there has been a lot of recent research activity combining MPI and threads. Besides

Chant, which was outlined in Section 2, other projects include [5], which addresses the issue of

making MPI (using P4) "thread-safe" with respect to internal, worker threads designed to improve

the efficiency of MPI, but not intended to be user-accessible entities (i.e., they cannot execute

user code); and [20], which addresses many possible extensions to the MPI standard, including the

addition of long-lived threads capable of executing user code. Suggestions for altering the role and

functionality of communicators would allow for multiple threads per communicator, thus permitting

11
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Figure 8: Execution times for barrier

collective operations among the threads.

The contribution of this paper is to provide a design for a thread-level scoping mechanism that

is not predicated on MPI constructs and their extensions, but rather on a simple communicating

thread model that supports remote service requests. Thus, until the MPI community sees fit

to extend the standard for user-accessible, long-lived threads, our approach provides a clean and

efficient mechanism for supporting data parallel execution in a multithreaded environment.

7 Conclusions

Recently, several runtime systems have been designed to support interprocessor communication

between lightweight threads within a process. Although collective operations and relative indexing

are common operations for most message passing systems, support for these operations at the

thread level has received little attention.

This paper addresses the issues of supporting collective operations and relative indexing among

threads in a distributed memory environment. We provide the design for ropes in the context of the

Chant system, where a rope defines the scope of collective operations with respect to threads. Our

design builds on the Chant system, which provides point-to-point communication between threads

in a distributed memory environment.

We plan to utilize this extension to the Chant runtime system for supporting data parallel codes

in a multithreaded environment, and will report on the results of this effort in future work.
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pthread_rope_create ( pthread_rope_ *rid,

int coherence_mode

);

Create a new rope with strong or weak

consistency and return its identifier.

_thread_rope_addnew ( pthread_rope_t rid,

pthread_attr_t attr,

const char

*function,

any_t args,
int argsize,

int ncontexts,

int context_list[I,

int nthreads );

Create nthreads new threads on each

specified context and add them to the

specified rope.

pthread_rope_addself ( pthread_rope_ rid

);
Add the calling thread to the specified

rope.

pthread_rope_send ( any_t buffer,

int count,

msgdata_t datatype,

pthread_rope_t rid,

int rank,

int tag );

Send a message to the thread specified

by the relative index <rid, rank>.

p_hread_rope_arrier ( pthread_rope_ rid

);
Participate in a barrier for the specified

rope.

pthread_rope_bcast ( any_t buffer,

int count,

msgdata_t datatype,

pthread_rope_t rid,

int root_rank );

Participate in a broadcast for the speci-

fied rope, originating from the specified

thread within the rope.

pthread_rope_exit ( pthread_rope_ rid

);
Initiate exit; rope will terminate when

all member threads have invoked this

function.

pthread_rope_join ( pthread_rope_ rid

);
Wait for the specified rope to exit.

_thread_rope_self ( pthread_rope_ *rid

);
Return the rope identifier for the call-

ing thread.

pthread_rope_rank ( pthread_rope_ rid,

int *rank

Return the rank of the calling thread in

the specified rope.

pthread_rope_maxrank ( pthread_rope_t rid,

int *rank );

Return the maximum rank (number of

threads) for the specified rope.

Figure 9: Ropes interface in Chant
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real, allocatable :: A()

real X

integer myRank, nContexts, myPid

integer localSize, uBound, tag

myKank= mynode()

myPid = mypid()

nContexts = numnodes()

localSize = N / nContexts

allocate(A(localSize+l) )

! send and receive boundary data

if (myRank .ne. O)

send(tag, A(1), 4, myRank-l, myPid)

if (myRank .he. nContexts - I)

recv(tag, A(localSize+l), 4)

uBound = localSize

if (myRank .he. nContexts - I) uBound = localSize - 1

do i = I, uBound

A(i) = A(i+l)

enddo

! broadcast A(1)

if ( myRank .eq. owner(A(1) ) then

X = A(1)

call csend(lO00, X, 4, -1, myPid)

else

call crecv(lO00, X, 4)

endif

Figure 10: Resulting data parallel code from HPF fragment
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subroutine UserF()

real, allocatable :: A()

real X

integer myRank, nThreads, roothank

pthread_rope_t myRope

integer localSize, uBound, tag, status

call pthread_rope_self( myRope )

call pthread_rope_rank( myRope, myRank )

call pthread_rope_maxrank( myRope, nThreads )

localSize = N / nThreads

allocate(A(localSize+l) )

! send and receive boundary data

if (myRank .ne. O)

pthread_rope_send(A(1), i, REAL, myKope, myRank-l, tag)

if (myRank .ne. nThreads - l)

pthread_chanter_recv(A(localSize+l), 1, REAL, ANY, tag, status)

uBound = localSize

if (myhank .ne. nThreads - I) uBound = localSize - I

do i = I, uBound

A(i) = A(i+i)

enddo

! broadcast A(1)

rootRank = owner(A(1))

if ( myRank .eq. owner(A(1)) ) X = A(1)

call pthread_rope_bcast ( X, I, REAL, myRope, rootRank )

° ° ° .

call pthread_rope_exit( myRope )

end

Figure 11: Resulting data parallel code from HPF fragment, with ropes
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